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Abstract

In spite of hard real-time embedded systems often being seemingly simple, modern
embedded system designs often incorporate features such as multiple processors and
complex inter-processor communication. In situations where safety is critical, such
as in for instance many automotive applications, great demand is put on developers
to prove correctness. The ForSyDe research project aims to remedy this problem by
providing a design philosophy based on the theory of models of computation which
aims to formally ensure predictability and correctness by design. A system designed
with the ForSyDe design methodology consists of a well defined system model which
can be refined by design transformations until it is mappable onto an application
specific predictable hardware template. This thesis evaluates one such hardware
template called the predictable System-on-a-Programmable-Chip. This hardware
template was developed during the work on a masters thesis by Marcus Mikulcak [7]
in 2013.

The evaluation was done by creating many simple dual processor systems using
the automated design flow provided by PSOPC. Using these systems, the time to
communicate data between the processors was measured and compared against the
claims made in [7].

The results presented in this thesis suggests that the current implementation of
the PSOPC platform is not yet mature enough for production use. Data collected
from many different configurations show that many of the generated systems exhibit
unacceptable anomalies. Some systems would not start at all, and some systems
could not communicate the data properly.

Although this thesis does not propose solutions to the problems found herein, it
serves to show that further work on the PSOPC platform is necessary before it can
be incorporated into the larger context of the ForSyDe platform. However, it is the
author’s genuine hope that the reader will gain appreciation for PSOPC as an idea,
and that this work can instil interest into further working on perfecting it, so that it
can serve as a part of ForSyDe in the future.





Referat

Även om hårda realtidssystem ofta verkar enkla så finner man i moderna inbyggda
system numera ofta avancerade koncept såsom multipla processorer med komplicerad
processor-till-processor-kommunikation. I situationer där säkerhet är ett kritiskt
krav, som t.ex. i många applikationer inom bilindustrin, så föreligger enorma krav
på de som utvecklar dessa system att kunna bevisa att systemen fungerar i enlighet
med specifikationerna. Forskningsprojektet ForSyDe försöker lösa dessa problem
genom att tillhandahålla en designfilosofi baserad på teorin om så kallade models of
computation som via formella bevis kan garantera förutsägbarhet och korrekthet. Ett
system designat med ForSyDes designmetodologi består av en väldefinierad modell av
systemet som transformeras, tills dess den kan mappas mot en applikationsspecifik
förutsägbar hårdvarumall. Detta examensarbete ämnar att utvärdera en sådan
hårdvarumall som kallas predictable System-on-a-Programmable-Chip, eller PSOPC.
Denna hårdvarumall utvecklades under arbetet med en masteruppsats av Markus
Mikulcak [7] under året 2013.

Utvärderingen bestod av skapandet av ett enkla tvåprocessorsystem med hjälp av
PSOPCs automatiska designflöde. På dessa mättes sedan tiden för att kommunicera
data mellan processorerna. Dessa kommunikationstider jämfördes sedan med de
påståenden som görs i [7].

Resultaten som presenteras i detta examensarbete föreslår att nuvarande implemen-
tation av PSOPC-plattformen inte ännu uppnått tillräcklig mognad för att kunna
användas i verkliga tillämpningar. De data som insamlats från många olika sys-
temkonfigurationer visar att många av de genererade systemen uppvisar oacceptabla
avvikelser. Några system startade inte ens och några klarade inte av att kommunicera
data på ett korrekt sätt.

Även om detta arbete inte föreslår några lösningar på de problem som presenteras
häri så visar det på behovet av mer arbete med PSOPC-plattformen innan den kan
bli en del av hela ForSyDe. Men, det är författarens genuina förhoppning att läsaren
förstår de positiva aspekterna av PSOPC som idé, och att detta arbetet kan ingjuta
intresse för att arbeta vidare med plattformen, så att den i framtiden kan bli en
integral del i ForSyDe.
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1 Chapter 1

Introduction

1.1 The Computer as an Infallible Machine

When Charles Babbage in 1823 received government funding to build his difference
engine, it was his intention to remedy the fact that human computers made errors [2].
His desire for a machine that could never produce an error stemmed from the fact
that the scientific society of that time made extensive use of hand crafted tables.
These long lists of numbers would often contain errors, and a scientist or an engineer
would sometimes propagate these errors into their calculations or onto their designs.
In a situation where no errors could be tolerated they would have had to recalculate
these values themselves rather than blindly trust the printed tables.
So Babbage planted the first seed towards the infallible machine we have now come
to trust ever so blindly.

This machine would eventually evolve into the mature entity we now know as the
computer. As computer engineers we are taught that a computer has an error rate
of almost infinitesimally small proportions, i.e. the computer is in practice every bit
as infallible as Babbage would have hoped for. Still we face the fact that computer
programs make errors. Clearly having a machine do all calculations were not sufficient.
Humans are still in charge of telling the computer what to calculate.
The programs we use to instruct the computer what to do has grown into huge
convoluted beasts that we often don’t comprehend. We are in the same situation as
Babbage found himself in. We cannot any longer use the computer and feel confident
enough to claim to know that the computer will do what we think it will do in all
situations.

1.2 Humans Make the Errors

In the field of real-time systems, and in particular the so called hard real-time systems,
it is essential that we can predict not only the outcome of a certain computation,
but also at which point in time the result of the computation is available. We expect
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these systems to respect certain deadlines. A missed deadline can in some contexts
have fatal consequences. Once again we as humans are the ones who introduce errors.
These errors are obscured deep within layers of code, and manifests themselves, many
times, on occasions long after the programmer finished his work.

We realize that we can formulate rules that, if obeyed, allow us to claim to know
what the program will and won’t do, with the same level of confidence as we trust
the rules of algebra.

The numerical tables of Babbage’s time were calculated according to well understood
and well formulated laws, the laws of mathematics, and just as Babbage realized
that humans are apt to making errors and should be replaced by machines, we
too should now replace ourselves as programmers with machines for the very same
reason.

This movement towards higher abstraction is a movement that has existed throughout
the history of modern computers, but often with an emphasis on giving programmers
more expressiveness rather than to ensure correctness.

We have devised extensive theory with well formulated rules that guarantee pro-
grammatic correctness. However, we have proven beyond doubt that we often
fail to adhere to these rules when we try to apply them manually, whether it is
unintentional or because we are lazy. It then seems only reasonable to let com-
puters infallibly perform the application of these rules. We should merely present
the computer with the desired behavior, and let the computer provide the correct
implementation.

1.3 It is Hard to Change

The engineering community is a slow moving colossus. In Babbage’s days, his machine
threatened to put the human computers out of work. In modern day, a shift towards
new and better practices depends on industries willingness to invest in new knowledge.
The main problem with shifting towards a more formal paradigm in programming
is that one perceivably has to give up some of the expressiveness of our current de
facto programming languages. Some programming constructs are just inherently
“unsafe”, at least in safety critical applications. We have to be more stringent in
our work and we need to re-learn certain aspects of what we think we already
know. To re-educate entire workforces requires cost and time intensive investments.
Making huge investments is something that the industry is generally reluctant to do,
especially if the benefit of the investment is blurry at best. Corporations have made
long lasting commitments into what tools and technologies to use, and it is not easy
for them to just turn and start moving in a new direction.

On the other hand, making the transition easy by making available tools and
workflows to go with new research findings is not something academia is particularly
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proficient in. Researchers generally formulate their theories, only to go on to rant
about what a glorious world we would have, would we only implement hers or his
ideas.

1.4 The Research Community Provides the Solutions

In year 1996 research commenced on what would eventually be called Formal System
Design [9; 10], or ForSyDe for short. ForSyDe is a methodology that lets the engineer
formulate the behavior of the system on a high abstraction level, in such a way that
it’s function is formally comprehensible, and the behavior is easier to prove through
analysis. The current state of the art to “prove” correctness of a program is by
simulating it. In very few practical situations, however, is it possible to define a
simulation in such a way that one can say that the simulation exhaustively proves
that the program will do what it is supposed to do, and further more, that it will
never ever do anything that it is not intended to do. Programs developed in ForSyDe
can be shown to behave according to the defined behavior, and hence the need to
simulate is diminished.

The ForSyDe research project has grown and now encompasses not only the methods
to provide the formalism, but also an entire proposed tool set and workflow all the
way from an abstract model to a complete hardware/software system. This thesis
aims to evaluate portions of the proposed workflow at its current state of development.
It is in large parts a continuation of previous work done by Marcus Mikulcak which
is presented in his master’s thesis from 2013 [7]

1.5 Summary and Contribution

Chapter 2 presents the background to this thesis. It will briefly address the topic of
developing hard real-time embedded systems, and the challenges related to this. It
also talks about the ForSyDe research project conducted at KTH. Finally it introduces
the PSOPC hardware template and automated system generation workflow on which
this thesis is based. Chapter 3 gives a hands on tutorial on how to create systems
with PSOPC. Chapter 4 describes the contributions of this thesis and presents the
collected data and subsequent analysis. Chapter 5 presents the authors conclusions
as well as suggestions on future work.

5





2 Chapter 2

Background

This chapter aims to provide an understanding of what work has previously been
done leading up to this thesis. The first section presents arguments for formal
design in general, followed by a presentation in broad terms of the ForSyDe research
project. The third section presents the design space exploration phase of the proposed
workflow, while the fourth and fifth presents the PSOPC platform and the purpose
of this paper.

2.1 Embedded Systems

Embedded systems are all around us. Today, almost all consumer electronics contain
embedded microcontrollers in one form or another. Whether an embedded system
works or not is not always critical. Sometimes it becomes a mere nuisance when the
television does not respond to your frantic pressing on the remote. But sometimes it is
of utmost importance that the embedded system never fails. The task of designing as
complex systems as we nowadays encounter, and at the same time leaving guarantees
on the operation, is not trivial. This section tries to explain why it is not so easy using
de facto programming languages and current best practises on modern computer
systems.

2.1.1 Hard Real-Time Systems

In critical applications a system needs to be designed in such a way that the
operation can always be guaranteed. This can be exemplified with the example of
an airbag controller in a car. We depend on that the operation of such a controller
is always correct and never executes in an untimely manner. It needs to react to a
certain stimuli at precisely the correct time, otherwise the results are catastrophic.
The airbag controller is an example of what is generally called a hard real-time
system.
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The single most important requirement of processes in a hard real-time system is that
a process always finishes before its deadline, i.e. a point in time after which the result
is no longer valid. Missing this deadline usually means failure, in some cases failure
of catastrophic measures as in the above mentioned example.

To know whether or not a process will meet its deadline, one has to measure or
calculate its worst case execution time, or WCET. We can try to estimate it by
simulation, but in case it is possible to formally analyze it, analysis is preferred over
simulation.

2.1.2 General Purpose Computers

Modern general purpose central processing units or CPUs, as well as general purpose
operating systems, are not well suited for these kinds of applications for a number
of reasons. The systems we come in daily contact with, the operating system and
CPU used in our laptops or in our phones are designed to be as fast as possible in
the general use case. This means that throughout the history of computer research,
the focus has been on inventing tricks that speed up the most common use case
scenarios, at the expense of predictability. Modern CPUs have many features that
make it impossible to determine how much time a piece of code will take to execute.
Features such as branch prediction that lets the CPU guess the outcome of an if..else
test are commonplace in current generation CPUs. Often the guess is correct and
the CPU will have spent less time performing the test and the actions following
the test, but sometimes the guess is wrong, imposing a penalty for the mistaken
assumption.

Modern CPUs also typically contain cache memories which are fast memories, usually
placed on the die of the CPU itself. Caches are meant to hold data that is highly
likely to be needed in the future, so that one can avoid to fetch data from slower
storage mediums, such as SDRAM and hard disk drives. In the general case the
needed data might be present in the cache, which means that it will be available fast.
In some cases it might not be available in the cache, in which case the data acquisition
needs to happen from a medium often magnitudes slower. If the data will be cached
or not is not always predictable and one has to assume the worst case scenario which
often lead to unnecessary overestimation of the access times.

Similarly, modern operating systems are generally optimized for perceived respon-
siveness and speed in the most common scenarios, at the expense of lack of speed
in more uncommon scenarios. They employ various buffering schemes to mimic the
function of cache memories, and in case of multithreaded process execution, they
rarely employ fully predictable scheduling schemes.

As there are no means to deterministically analyse these kinds of behaviours, we
cannot use these kinds of CPUs and operating systems to control our airbag controller

8
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as we can not be sure it will always react with the desired behaviour in any situation.
It depends on factors we cannot control or predict.

As will be described in Section 2.4, part of the solution to this is to use hardware
over which we have control and which exhibits what is called composability and
predictability.

2.1.3 General Purpose Programming Languages

Throughout the history of modern computing we have seen a great number of
programming languages spring to life. Some languages are specialized, intended for
specific use cases. Others are more general, suitable for a wider array of applications.
Almost all languages have had some particular type of applications for which it is a
good fit. Some languages execute faster, while others might have a more expressive
syntax. During the evolution of programming, some distinct classes of programming
languages have emerged. The popularity of a language does not automatically
correlate to suitability for all types of applications though, as this section tries to
explain.

2.1.3.1 Imperative Languages

The by far most common class of programming languages right now are the so called
imperative languages. These include languages such as C, FORTRAN, Java etc. The
common denominator of these languages is that they all define how a program should
perform computations. The programmer lists the steps in an algorithm almost as a
cooking recipe, and the computer executes the described steps. This is very close
to how the computer actually operates, as it takes one instruction at a time and
does whatever that particular instruction is meant to do. During the execution
of a program, state is being maintained and altered, and the program might be
programmed to do different things depending on the current state. This leads to
apparent problems with the ability to formally analyze a program written in this
fashion, since, to be able to have claimed to fully understand what a program does,
not only does one have to consider all possible inputs to a program, but also all
possible states in conjunction with all possible inputs. The problem of completely
analyzing a program is not always possible.

Since algorithms described imperatively are often inherently sequential as in “first
do this, then this and then this etc.” it is often hard or even impossible to parallelize
the execution. The execution of the program depends on one set of states, and if
concurrent threads of execution alters that one set of states simultaneously one often
find that this leads to problems.

9
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2.1.3.2 Declarative Languages

In an effort to alleviate the situation many other languages and classes of languages
have been invented. The main class is often referred to as declarative languages. The
difference between an imperative language as opposed to a declarative one, where in
the former one specifies “how” something is done, in the latter one instead specify
“what” should be done.

A special class of declarative languages are the functional languages, such as Scheme,
Clojure and Haskell, to name but a few. The rationale behind these being that,
as with a mathematical function, a functions result is only depending on its input.
It does not depend on any hidden states. A certain combination of inputs will
always render the same output at every instant in time independent of what has
happened before. From an analyzability standpoint, this is far better than with
the imperative languages. Also, since the programmer specifies what is to be done,
rather than how, it is up to the compiler to implement the program. As such, the
compiler is free to make whatever alterations it see fit, as long as it preserves the
function. Many compilers are for instance quite able to parallelize programs. Since
in purely functional programs, execution does not rely on states, one can often split
the execution of many sequential statements into parallel threads and perform many
computations concurrently.

2.2 ForSyDe

ForSyDe tries to solve three problems. First it forces the system designer to think
structured. The idea is to design programs in such a way that they are already
correct to begin with. This is achieved by forcing the designer to abstractly model
the program first. In traditional imperative programming, programmers tend to
go from a written (or often only a vague idea not even put on paper) straight into
coding algorithms on a low abstraction level. This often have the unfortunate effect
that the developer looses focus on the big picture. In larger development teams it is
even more important to properly model the system on a high abstraction level, so
that everyone can agree on what the system is supposed to do. Only after a complete
model has been agreed upon should any low level coding commence. But even in
large corporations with experienced teams, developers rush into the creative coding
and forget about the model. When it becomes time to connect all the systems parts,
they quite often don’t fit together because the proper interfaces between modules
were not modeled on beforehand.

Would a model have been established in the first place, it would have been easy to
compare the implementation to the model and continuously assess the integration
of all the parts. Since ForSyDe forces the developer to first create a model, the
implementation will much more likely behave as expected. Furthermore, a model

10
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in ForSyDe is directly executable, which means that one can conduct simulations
already in the modelling stage of development. This is a huge benefit compared to
other paradigms, where it is often not until the later stages in production where any
actual system behaviour can be tested and assessed.

Secondly, ForSyDe maps the system model onto one of several software/hardware
implementation according to a set of constraints defined by the system designer.
These constraints can include limits on memory usage, hardware cost, power demands
etc. This lets the developer, not only automatically get an implementation, if such
exists, that complies with the requirements, but also try different tradeoffs by altering
the constraint set.

Finally ForSyDe generates the complete hardware/software system according to the
output of the design space exploration. The purpose of ForSyDe in short is to let
the designer create systems whose function is formally proven to be correct as well
as optimal with respects to constraints.

2.2.1 Synchronous Data Flow

ForSyDe programs are expressed as a graph of nodes, each of which are one of many
supported models of computation, or MoCs . This thesis will focus on Synchronous
Data Flow, or SDF [6] since this is the only MoC currently supported by PSOPC,
the platform this thesis aims to evaluate. Without going to deep into what SDF
means, it is a model of computation that has the following important properties.
The actual time passed when executing an SDF, as a consequence of computing
and transferring of data, is not taken into account. The only notion of time is in
what order computations occur. An SDF is usually modelled as a directed graph as
shown in figure 2.1. In an SDF, nodes are called actors and are the computational
parts of the program. Arcs between actors are communication channels between
different computational blocks, often modelled as FIFO queues. An actor is said
to “fire”, meaning that a computation may occurs only as soon as there is sufficient
input available. The data that is passed between actors are called tokens, and can
be any kind of data that can be atomically defined 1. The number of input tokens is
fixed and known at compile time. As soon as there are as many tokens as an actor
needs to be able to do its computation, it becomes eligible for scheduling. At any
point in time after this the actor may fire. When the actor fires it “consumes” all
inbound tokens, and will eventually produce a fixed and predetermined number of
output tokens. In SDF an actor always consumes a fixed number of input tokens
and produces a fixed number of output tokens per each “firing”.

1A token can only come from one actor, traveling to one actor. There is no restriction on what the
data actually is. It could be a simple integer, or a satellite image, or even a list of images. But it
cannot be a compilation of data from different source actors, e.g. an x coordinate from one actor
and a y coordinate from another.
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Figure 2.1: An example of an SDF graph. Actor C can only fire once A has fired twice and B once.
The dot on the arc between actor D and A denotes a delay. This delay is needed to get
the system started, since some actor needs to be the one to fire first and consequently
needs some initial input. Usually this data is some null value. A valid schedule for this
system would be A, A, B, C, D, and then this schedule repeats. The delay in this case
needs to hold two initial tokens. A real system would have inputs and outputs as well,
but are omitted here for clarity.

The benefit of modelling using SDF is that it is easy to formally prove the function
of the program. Once the SDF graph is defined, i.e. the number of input and output
tokens for each node has been determined, one can analytically determine a static
schedule for the execution order. This means that it can be mathematically proven
that the program is schedulable, i.e. that it will not halt unexpectedly, a so called
deadlock, and that the size need for the communication buffers will be bounded and
not grow past a maximum size. A static schedule is often more straight forward to
implement, compared to dynamic schedules.

These graphs can then be transformed into other graphs with the function pre-
served [11], such as breaking one node into multiple parallel nodes so that execution
of parts of the program can be done concurrently.

2.2.2 Haskell

The first implementation of ForSyDe uses Haskell as its programming language which,
being a purely functional language, detaches the formulation of the program from
the implementation. Once the program is expressed, since its constituent parts are
side effect free, the program can be transformed without altering the function of the
program according to a set of transformation rules. These transformation rules can
be shown to produce formally equivalent results [9].

2.2.3 SystemC

In an effort to gain interest from the industry a SystemC implementation of the
ForSyDe system was developed. Being derived from the C programming language,

12
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it is an easier entry into ForSyDe for programmers with a background in C and
its relatives. However, since C is not a purely functional language, some lan-
guage constructs has to be avoided in order to comply with the stringent rules of
ForSyDe.

This thesis has not been developed with neither Haskell nor SystemC, so the
reader will only need basic knowledge of C to understand the code presented
later.

2.3 Design Space Exploration

Design space exploration or DSE, is the act of searching through the set of possible
implementations for a best fit. ForSyDe contains a tool that tries to map the
system behavior defined as an SDF graph onto one of many predictable hardware
platforms [8]. The mapping tries to find an optimal implementation and schedule
based on the graph on one hand as well as a set of constraints on the other. The
designer may constrain the memory usage, the power requirements, the processing
throughput etc. [8]. The output of the mapping step is a hardware implementation,
a schedule and performance data.

The inherent problem of DSE is that even trivially sized systems has enough parame-
ters to make the search space vast, and for large systems it may very well be so that
an exhaustive search is not feasible within practical limits. The ForSyDe DSE tool’s
solution to this problem is a tradeoff between solution optimality and search time [8].
The set of mapping tool is modular to accommodate for the addition of more types
of constraints in the future.

2.4 The Predictable System-on-a-Programmable-Chip
platform

Many hardware platforms for embedded systems nowadays sport many processing
cores. Especially in the field of Field Programmable Gate Arrays or FPGAs, one can
devise systems with an arbitrary number of processors, only limited by the number
of logic blocks in the particular FPGA. The PSOPC platform fits into the end of
the ForSyDe tool chain. It is responsible for taking the output of the DSE stage as
input, and produce the actual hardware synthesis for an FPGA. The PSOPC system
is based on Altera’s line of FPGAs, and in particular the SOPC-builder software for
aiding in the construction of System on Chip or SoC.

Altera provides a soft processor core called NiosII. NiosII comes in three variants
where NiosII/e (e for economy) is most suitable for predictable systems for rea-
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sons such as lack of advanced instruction pipeline, branch prediction and cache
memory [5].

SOPC is primarily a graphical environment which aids the developer in generating
whole systems with all the needed components and peripherals, such as processor,
memory controllers, I/O, as well as the connection between all components. The
interconnect structure provided by Altera, called Avalon Switch Fabric, is however
not optimal for our purpose. It is not a bus in the traditional sense, where only
one master device can communicate with one slave device at any time, but shares
some features of more advanced network topologies. Due to what is called the
slave-side arbiter and a flexible routing scheme, multiple masters can simultaneously
communicate with multiple slaves provided that not more than one master tries to
communicate with the same slave. As Figure 2.2 and 2.3 on page 15 shows, when
two or more masters request to communicate with the same slave device, the arbiter
selects which master is granted access, and blocks the other masters. To let all
masters have time to communicate, the arbiter employs a fairness-based round-robin
scheme [4; 7], where each master is guaranteed a selectable number of transfers.
However, if one master is not using all allotted number of transfers it forfeits them to
the other masters, which has their number of transfers immediately replenished. This
means that if one master α is allotted 4 transfers and another master β 4 transfers, it
is not certain that master α actually gets half of the total amount of communication
time. If master α only accesses the slave for one transfer and then goes away to do
other business, but then right away decides it wants to make another transfer, it has
to wait until all the other masters has had their turn, effectively leaving master α
with only 1/5th of the total time. If two masters are connected to the same slave
device, their timing behavior is dependent on each other and the system is said to
be not composable.

2.4.1 Time Division Multiplexing arbiter

As explained in the previous section, components connected through the standard
interconnect are not composable. The timing changes depending on other components
and their actions. Composability is a criterion in ForSyDe, and this effectively renders
the unaltered Avalon Switch Fabric useless for our purposes. In 2013 Marcus Mikulcak
published his master thesis [7] in which he proposes a modified arbiter for Avalon
slaves based on time division multiplexing. As illustrated in Figure 2.4 each master
is allotted a fixed number of time slots in each round, whether the master wants to
access the slave or not. This minor change makes the access times predictable at
the cost of potentially wasted bandwidth, since unused time slots cannot be used
by other masters. The TDM arbiter modification is retrofitted to the system that
SOPC-builder generates.

14
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clk
master_1_req

grant_master_1
master_2_req

grant_master_2

Figure 2.2: Illustration of the Avalon arbitration scheme. In this example each master can make four
consecutive transfers, and when it has used them up, access is granted to other masters.
Signals and timing are illustrative only, and do not necessarily correspond to real signals.

clk
master_1_req

grant_master_1
master_2_req

grant_master_2

Figure 2.3: If one master only wants to transfer once, it forfeits the rest of his transfers for this
round and has to wait until all other masters have used up or forfeited their transfers
before being granted more transfers. In this example master_1 can only send for 20% of
the time instead of 50% as in the example in figure 2.2. The system is not composable.

clk
master_1_req

grant_master_1
master_2_req

grant_master_2

Figure 2.4: Illustration of how the TDM-arbiter makes the masters independent of each other.
Regardless of when and how often a master requests to transfer, each master is always
guaranteed its number of transfers, in this case 4 transfers per 8 transfer cycles. Again,
these signals are for illustrative purposes and do not correspond to actual hardware
signals.
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2.5 Motivation

The motivation for this thesis is that as the ForSyDe research project has moved
along and grown, the whole tool chain is no more only separate bits or pieces, but
starts to resemble a chain. As such the whole chain has not yet been thoroughly
tested. Not all links in the chain are finished though, parts that are not yet done
include the automatic code extraction, but sufficiently large portions of the system
is in a mature enough state to begin to be tested.

This thesis aims to help in validating and assessing one vital part of the complete
ForSyDe ecosystem, namely the PSOPC system.

More precisely, this thesis aims to provide a simple application, from which to
derive what parameters control inter-actor communication time in a PSOPC sys-
tem. These measured metrics will provide a benchmark for the DSE tool, and will
allow for seeing whether the projected performance data is in line with observed
data.
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3 Chapter 3

Describing Systems in PSOPC

This chapter describes the function of the PSOPC scripts. Instructions on how to
obtain a copy of PSOPC was at the time of publication available at [1]. The author
of this thesis has used a Linux virtual machine on VMware Player, running Ubuntu
14.04 LTS and Quartus version 12.1 with the University Program modules installed.
The FPGA used is the Altera Cyclone IV (EP4CE115F29C7N) on the DE2-115
evalution board.

3.1 Overview of PSOPC

The PSOPC system was created to automate the stages after the DSE phase. In its
current condition the PSOPC system creates the physical layer of the complete system
model, meaning that it generates all entities marked with bold lines in Figure 3.2. In
the future, PSOPC is meant to also create the parts within each processor, marked
with dashed lines, but this is currently not implemented [7].

It is assumed that, before running these tools, the system designer has already defined
the system model by use of one or more of the supported MoCs, and it is furthermore
assumed that this model is an SDF process network. ForSyDe supports more MoCs,
but [7] focuses mainly on providing support for SDF.

The DSE mapping will deliver a hardware description in an abstract form, similar to
the example in listing 3.1, and PSOPC will transform that abstract description in
two simple steps with two easy to use scripts.
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Figure 3.1: Overview of the PSOPC system. The PSOPC system takes as input a textual description
of a system and creates a SOPC builder project. The arbiters created by SOPC Builder
are then modified into TDM arbiters. PSOPC also generates a Quartus project and
compiles the actual hardware image. This image is then transferred onto the FPGA and
all processors are started. Finally PSOPC creates a software skeleton in C for each
processor. (Image adapted from [7])

1 <dse_output>
2 <!−− proces s 0 , mapped to CPU 0 , one SDF channel to proces s 1 −−>
3 <proce s s id="0" cpu="0">
4 <channel>
5 <!−− channel from proces s 0 to proces s 1 −−>
6 <to_process>1</ to_process>
7 <!−− tokens have a s i z e o f 32 by t e s −−>
8 <token_size>40</ token_size>
9 <!−−the b u f f e r s i z e in number o f tokens on the r e c e i v i n g s i d e−−>

10 <bu f f e r_s i z e>4</ bu f f e r_s i z e>
11 </channel>
12 <!−− the memory requirement o f the proces s on the proces sor −−>
13 <local_memory_consumption>32768</local_memory_consumption>
14 </ proce s s>
15

16 <!−− proces s 1 , mapped to CPU 1 , one SDF channel to proces s 0−−>
17 <proce s s id="1" cpu="1">
18 <!−− channel from proces s 1 to proces s 0 −−>
19 <to_process>0</ to_process>
20 <!−− tokens have a s i z e o f 60 by t e s −−>
21 <token_size>60</ token_size>
22 <!−−the b u f f e r s i z e in number o f tokens on the r e c e i v i n g s i d e−−>
23 <bu f f e r_s i z e>4</ bu f f e r_s i z e>
24 <!−− the memory requirement o f the proces s on the proces sor −−>
25 <local_memory_consumption>32768</local_memory_consumption>
26 </ proce s s>
27 </dse_output>

Listing 3.1: dse_out.xml A simple example of a DSE output in XML format.
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Figure 3.2: PSOPC generates the boldly marked entities, while currently the dashed parts are left to
the system designer to implement manually.

3.1.1 Directory Structure

It is suggested that one keeps a certain directory structure while working with the
PSOPC environment. This thesis proposes the following structure:

PSOPC
built_systems
documentation
projects
source_code

where documentation contains doxygen generated documentation which one may
optionally generate1. The source_code directory contains all the PSOPC system files,
projects should contain the projects in the form of the input files to the system gen-
eration, while built_systems will contain the generated output.

Remark! For PSOPC to put the generated system files into the built_systems folder,
one has to modify the create_quartus_project.py script. The version of the script
used in this thesis contains hardcoded paths which needs to be altered to match the
directory structure of each particular installation.

1See PSOPC web page [1] for detailed information on how to generate the documentation
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3.1.1.1 The source_code Directory

The structure of this directory looks like the following:

source_code
dse_output_processing

dse_to_architecture.py
system_creation

create_quartus_project.py
lib

The file dse_output_processing/dse_to_architecture.py is the script that transforms
the XML file from the DSE mapping into an intermediate hardware description that
we need as input to the system generator script. The directory system_creation/
lib contains all supporting files and scripts that make up PSOPC, and the file
system_creation/create_quartus_project.py is the script one runs to generate the
system.

3.1.1.2 The projects Folder

A new project directory should initially only contain the DSE output in the XML
form. This is here illustrated with an example project:

projects
example_project

dse_out.xml

After the dse_to_architecture.py script has been run with the XML file shown in
listing 3.1 the directory will look like:

projects
example_project

cpu_0
buffers.h
cpu_0.c

cpu_1
buffers.h
cpu_1.c

dse_out.xml
system_description.xml
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This project is now ready to be built by the create_quartus_project.py script.

3.1.1.3 The built_systems directory

For every project that the create_quartus_project.py script is successfully run for, a
large number of files and directories gets created. However, in particular, one directory
is more relevant than anything at this point. Inside built_systems/example_project/
a directory named software, containing two directories for each processor instantiated
in the system, can be found. For the example project discussed here, this would be:

built_systems
example_project

software
example_project_cpu_0
example_project_cpu_0_bsp
example_project_cpu_1
example_project_cpu_1_bsp

The directories with names ending with bsp contain the board support package or
BSP for each processor. The other directories contain only a single Makefile. The
purpose of this file will be discussed later.

3.1.2 Workflow

In short, the steps to take to produce a running system are the following, illustrated
with the example_project:

1. Preparations: Attach the FPGA board and start a Nios II command shell
with:

$ nios2_command_shell . sh

2. Create system description from DSE output: The following commands
generates the file system_description.xml as well as source code skeletons for
each CPU.

$ cd PSOPC/source_code/dse_output_process ing /
$ python dse_to_arch i tecture . py −−i n pu t_ f i l e . . / . . / p r o j e c t s /

example_project /dse_out . xml
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3. Edit the system description file: After system_description.xml has been
created, this file has to be manually modified. It is located in the directory
PSOPC/projects/example_project/. The TDM arbiter slot length needs to be
set to desired value. Also, all slot assignments for the memories are unset by
default, meaning that no master will ever be granted access to them. This has
to be changed to reflect the slot division wanted for your particular system.

Considering a system with one communication channel from CPU 0 to CPU 1,
and using a TDM slot length of 10000 cycles, one would need to modify the
following line:

<!−−Communication memories−−>
<module kind="altera_avalon_onchip_memory2 " name="

shared_memory_process_0_process_1 " s i z e ="512" tdma_slot_length
="5000" cpu_0_data_master_slots="−−−"
dma_cpu_0_write_master_slots="−−−" cpu_1_data_master_slots
="−−−"/>

into this:

<!−−Communication memories−−>
<module kind="altera_avalon_onchip_memory2 " name="

shared_memory_process_0_process_1 " s i z e ="512" tdma_slot_length
="10000" cpu_0_data_master_slots="X−−"
dma_cpu_0_write_master_slots="−X−" cpu_1_data_master_slots="−−X
"/>

4. Build the system:
$ cd PSOPC/source_code/ system_creat ion /
$ python create_quartus_pro ject . py −−project_name

example_project −−system_descr ipt ion . . / . . / p r o j e c t s /
example_project / system_descr ipt ion . xml −−sopc −−source_code
. . / . . / p r o j e c t s / example_project /

This will prepare and invoke all the Altera tools used to actually build the
system. This script can take considerable time to finish, but should provide
lots of textual feedback as to what is going on. A more detailed description of
what the script does can be found in [7]. The last thing this script does is to
download the software onto your attached FPGA.

5. Start terminals: To be able to monitor the output from the programs you
will run on the processors, we need to start terminals that show the output
of each processors JTAG UART. Each processor has a unique instance ID
associated with its JTAG. For cpu_0 this should be number 0, and for cpu_1
it should be the number 1. In our example you would do the following:
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$ xterm −name ‘ ‘CPU_0’ ’ ‘ ‘ / path_to_altera_tools / a l t e r a /12 .1/
n io s2eds /bin / nios2−t e rmina l −−i n s t ance =0 ’ ’ &

$ xterm −name ‘ ‘CPU_1’ ’ ‘ ‘ / path_to_altera_tools / a l t e r a /12 .1/
n io s2eds /bin / nios2−t e rmina l −−i n s t ance =1 ’ ’ &

Notice the trailing ampersand &, which lets you continue working in the shell
after you invoke a command that does not exit.

6. Write the C source code: PSOPC has already created created skeleton
source code files for all processors. Each processors source code is found in a
subdirectory of the project directory. At this point cpu_n.c contains:

/∗∗ @f i l e
∗ @brie f The main source f i l e f o r CPU n .
∗/

#inc lude " bu f f e r s . h "

i n t main ( )
{

i n i t i a l i z e _ b u f f e r s ( ) ;

// de c l a r e communication v a r i a b l e s here

whi l e (1 )
{

// rece ive_token ( sender , r e c e i v e r , pointer_to_data ) ;
// c a l l p roce s s f unc t i on s here
// send_token ( sender , r e c e i v e r , pointer_to_data ) ;

}
}

To have processor 0 continuously send data to processor 1, you would just make a
call to send_token(0, 1, pointer_to_data_to_send) at the end of the while loop
in cpu_0.c, and a call to receive_token(0, 1, pointer_to_where_to_store_data)
at the beginning of the while loop in cpu_1.c. The call to receive_token()
blocks until there is data to receive, and the call to send_token is blocking if
the channel buffer is full.

7. Compile and download the C source code: For each processor we now
compile and download the source code:

$ cd bui l t_systems / example_project / so f tware /
example_project_system_cpu_0

$ make
$ make download−e l f
$ cd . . / example_project_system_cpu_1
$ make
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$ make download−e l f

If you at this point encounter any bugs, you just reiterate step 5 and 6 until
you are satisfied.
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3.2 System Model

This section presents how to transform your system model into the proper input
format for the workflow.

3.2.1 DSE Output Format

In his thesis [7], Mikulcak defines a syntax that shows one possible way of interacting
with the PSOPC system. It is a simple XML format with only a handful of tags
defined. You define the processes and the communication channels between them.
Listing 3.1 on page 18 shows one example of a system.

The root element is called dse_output and it contains all of the process elements.
For each actor in your SDF graph you define one process. Every process has two
attributes, a unique number called id, and a number called cpu indicating which cpu
the actor belongs to.

Each process element contains one mandatory child element called lo-
cal_memory_consumption whose content is the number of bytes required by the
process for stack and heap data.

Each process also contains zero or more channel elements, which correspond to
the outgoing arcs of the SDF graph. A channel element has three child elements,
to_process, token_size and buffer_size. The content of the to_process element is
an integer number corresponding to the unique id of the receiving process. The
content of the token_size element is the integer number of bytes required to hold
one token. The content of the buffer_size element is an integer corresponding to
how big the recieving buffer needs to be according to the schedule set by the DSE
phase.

For each CPU mentioned in the process elements, the system will create a processing
element consisting of one Nios II/e with a performance counter useful when profiling
your code, one JTAG UART interface for communicating with a PC host machine,
a block of local memory to facilitate fast and predictable access to local data and
instructions and, maybe most importantly, one DMA controller responsible for
sending and recieving tokens. The DMA is an important integral part of the PSOPC
system, since it serves to decouple the execution of actors from the communication
between actors.

For every channel element with token sizes larger than 4 bytes, the system will create
one shared on-chip memory block along with a modified TDM arbiter. For channels
with a token size of 4 or less bytes, PSOPC will instantiate a hardware FIFO buffer
instead. The worst case communication cycle bound will decrease, but the use of
hardware FIFOs over software FIFOs is transparent to the programmer. Both use
the same C functions to send and receive tokens.
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Figure 3.3: For each processing element, a full Nios II/e processor core is instantiated along with
Performance Counter, JTAG UART, local memory and a DMA controller. For each
communication channel the system instantiates a dedicated block of shared on-chip
memory with modified TDM arbiters. The size of these memories are instantiated to be
exactly ti × bi bytes, where ti is the number of bytes per token for channel i and bi is the
length of the buffer for channel i. Image adapted from [7]

Figure 3.3 shows the architecture which would be created from the example in
listing 3.1.

3.2.2 PSOPC Input Format

It is convenient to only use the format presented in the previous section. However,
some degree of control is lost if one only works on this level of abstraction. For
instance, in the previously presented format you have no control over the TDM
arbiter settings, such as slot length and slot allocations. There may also be more
modules that one may want to connect to the system. The currently supported
modules are:

• Nios II/e processors

• On-chip memory blocks

• SRAM controller

• JTAG UARTs

• Performance counters

• PIO modules
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• DMA controllers

• FIFO memories

As the platform matures there will probably be more modules to choose from, such
as DSPblocks and video signal generators etc.

To be able to fully customize the output of the PSOPC system generator, one would
work with the system_description.xml file located in the project directory. The
syntax is closely related to how SOPC builder natively describes systems. Consult
[7] for further reference on this format.

3.3 Graphical Representation of the System

The PSOPC system generator also automatically generates a diagram showing the
system. An example is shown in Figure 3.4. These diagrams is in a format called dot.
These files can be rendered into an image by use of one of several programs in the
Graphviz package. The syntax on a Linux machine to render the diagram as a png file
would, provided that you have installed Graphviz properly, be:

$ cd bui l t_systems / example_project /
$ dot −Tpng example_project . dot −o example_project . png
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Figure 3.4: This graph represents the test systems created for this thesis. PSOPC automatically generates a graph depicting the system and its modules.
The graph is readily available in the Graphviz dot-format after the running of the PSOPC create_quartus_project.py script. Use one of
many tools in the Graphviz package to convert into an image.
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4 Chapter 4

Contribution

This chapter describes the application created for this thesis, the measurement data
collected as well as the analysis of this data.

4.1 Method

In order to be able to assess the PSOPC system, a simple system was created. This
system is comprised of two PSOPC processes mapped onto two different processors.
These processes communicate by use of the PSOPC token passing mechanism. The
two processors runs a simple SDF-applications, whose only purpose is to measure
and report the time it takes to send tokens from CPU 0 to CPU 1 and back again.
The application also checks data integrity by comparing the data being sent with
the data being received.

4.1.1 Test System Generator Script

To facilitate fast and easy testing of many different system configurations a script was
created. This script called tpsopc.sh (“Test PSOPC”) takes three parameters. The
parameter -t controls the size in bytes of each token being sent, the parameter -b
controls how many tokens the FIFO buffer shall be able to hold, and the parameter
-s controls the length in cycles of a TDM slot. The script then automates the whole
test run with the exception of one human intervention due to a bug in PSOPC or
possibly SOPC Builder. According to Mikulcak [7] each memory module must have
a base address which is divisible by its address span, i.e. a memory of size 2048 bytes
needs to have a base address that is divisible by 2048. The algorithm in use is not
always able to produce valid results. When this happens, the system designer has to
manually assign base addresses. This error appeared for all systems created during
the work of this thesis, but was always easily remedied by making use of the built in
feature of the graphical user interface in SOPC builder to automatically generate
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base addresses. After these steps PSOPC handles the creation and instantiation of
the system automatically.

When the system has been synthesized, downloaded onto the FPGA and booted, the
test system generator script proceeds to open up an UART connection to CPU 0,
redirecting its output to a log file. After that the script compiles and downloads the
two C programs onto the two Nios II processors, after which the programs are left
running to completion. The script then waits for the UART connection to terminate,
which signals that the programs has reached the end. It then extracts the data
from the log file and formats it for easy input in GNU Octave. The script finishes
by playing a telephone signal to let the operator know it has finished and is ready
for another test run. The whole process takes about five minutes on the particular
computer and virtual machine in use for this thesis.

4.1.2 Test Template - Hardware

1 <dse_output>
2 <proce s s id="0" cpu="0">
3 <channel>
4 <to_process>1</ to_process>
5 <token_size>REPLACE_1</ token_size>
6 <bu f f e r_s i z e>REPLACE_2</ bu f f e r_s i z e>
7 </channel>
8 <local_memory_consumption>65536</

local_memory_consumption>
9 </ proce s s>

10

11 <proce s s id="1" cpu="1">
12 <channel>
13 <to_process>0</ to_process>
14 <token_size>REPLACE_1</ token_size>
15 <bu f f e r_s i z e>REPLACE_2</ bu f f e r_s i z e>
16 </channel>
17 </ proce s s>
18 </dse_output>

Listing 4.1: Template dse_out.xml This template is used by the test generator script to generate
communication channels of arbitrary dimensions. The strings “REPLACE_1” and
“REPLACE_2” are substituted for the input parameters to the script.

As suggested by above listing (4.1), the test generator script generates a simple system,
consisting of only two processors and two communication channels. The dimensions
of the channels is governed by the parameters supplied to the script upon invocation.
The script then execute the same steps as described in Section 3.1.2 and performs
the same modifications of the system_description.xml file as described in Section
3.1.2.3, by use of the sed command and regex pattern matching.
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The TDM arbiter slot table for the two channels will be identical in function since the
same exact data is passed through both channels. There are three masters connected
to each shared memory block; the sending CPU, the sending DMA and the receiving
CPU. Consequently, the table have three entries. One TDM round is then 3 × s,
where s is the number of cycles specified with the -s parameter to the test generator
script. The transmission of one token involves all three masters, and each master has
to wait at most 2× s before it is granted access to the memory.

4.1.3 Test Template - C Source

Figure 4.1: Flow chart representation of the system testing program. The program on CPU 0 starts
by generating random tokens. It then waits some random amount of time to minimize
unintentional timing alignment anomalies. After the wait CPU 0 sends as many tokens
as specified with the -b parameter to the script. CPU 1 receives these tokens, and sends
them back right away. CPU 0 receives the tokens, compares them byte by byte with what
the script sent. If there exists any discrepancies between sent and received bytes, an error
is logged, else the total number of cycles spent on sending and receiving bytes are logged.
The process is repeated 1024 times.

Figure 4.1 shows the structure of the test program. It performs the same sequence
1024 times. First it fills the data structure representing tokens with random unsigned
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bytes. It then waits a random amount of time to decrease the risk of experiencing
timing anomalies due to accidentally aligning with the TDM round each subsequent
test. CPU 0 then start the performance counter and proceed to send as many tokens
as can be fitted in the buffer to CPU 1. CPU 1 then receives the tokens and passes
them back to CPU 0 as soon as all tokens have been received. When in turn CPU 0
has received all tokens two things happen, first the time it took to send these tokens
is logged and then a check is performed to see whether the received data matches
the sent data. When these don’t match, an error is logged.

Two templates have been created. The first template uses a for loop to make the
desired number of send and receive calls, while the other template inlines as many
send and receive calls as needed without using any loops. The merit for the first
template is that the code memory footprint does not change depending on the
number of tokens to send and receive. Meriting for the second template is that the
measured time only reflects the actual send and receive calls and not the execution
time overhead of the loop construct.

4.1.4 Measurements

Although other cost metrics such as number of logic elements is important in the
design space exploration, only transmission costs are considered in this thesis. To
also assess claims made on how large PSOPC systems are would have broadened
the scope of the thesis too much. The most important metric in the context of
implementing hard real-time systems as SDF graphs is arguably WCCC, or worst
case communication cycles. Ideally you would want to have a known upper bound
for every system configuration. In [7], Mikulcak claims that the WCCC for a token
transmission can be determined by the following formula,

1200 + 48t+max(TDM) (4.1)

where max(TDM) for all test cases in this thesis equals 2 × s as explained in
Section 4.1.2. According to [7] this formula is valid under the assumption that a
transmission can always finish faster than the allotted time slots per TDM round for
each participating sending master, i.e. it is a requirement that

1200 + 48t < ni × s (4.2)

where ni is the number of slots allotted to a master i and s is the number of cycles
per slot. If a token transfer takes longer than ni × s, the sending master will be
interrupted and will have to wait for the arbiter to grant another round of access.
For all systems created during work on this thesis, each master is only granted one
slot, so n = 1 for all masters i.
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4.1.4.1 Definition of a Transmission

The formula in Eq.4.1 describes the worst case communication cycles for t bytes.
Mikulcak is not entirely clear on what constitutes a transmission. The definition used
in this thesis is that the transmission time is the time as measured from the instant
that we issue the send command, to the instant at which all data to be transmitted
resides in the destination memory. Since no exact definition of the word transmission
is given in the context of measuring and predicting WCCC in [7], the definition given
herein is the definition assumed.

Each CPU has its own performance counter connected to it. In principle it would be
possible to synchronize the two CPUs to let CPU 0 determine when the measurement
starts, and let CPU 1 determine when the measurement ends. This, however, is not
a trivial task since the two processors are truly independent. This would require
a deep understanding about how the synthesized hardware behaves at gate level.
Therefore a different approach was opted for. CPU 0 is responsible for determining
both the start of the measurement as well as the end of the measurement, but instead
of measuring single transmissions, measurements are taken on pairs of transmissions.
The transmission time of a single transmission is then approximated by dividing
the measurement by two. This seems a fair estimate since both transmissions are
executed back to back with no operations in between. This might however give
lower than true WCCC measurements, since CPU 1 always issues its send command
immediately after it has finished receiving every time, and could in theory always be
aligned with the start of its arbitration grant slot, thereby potentially reducing the
measured WCCC for two back to back transmissions to 2 ∗ 1200 + 2 ∗ 48 ∗ t+ 1 ∗
max(TDM).

While Mikulcak in [7] is only concerned with token size and slot length, measurements
in this thesis contain a third variable, namely buffer length. To send many tokens,
some sort of repetition scheme has to be implemented. To achieve that, we could
either use a loop, using for or while constructs, or we can place as many calls
one after another until we have sent all tokens. The former adds execution time
overhead due to the C runtime having to perform conditional tests on each loop,
but presents a plausible real life implementation. The latter does not add execution
time overhead, but memory footprint grows proportionally to buffer length. Tests
have been conducted using the second method, with the motivation that since the
quantity to be measured is execution time, any auxiliary feature that alters the
execution time is unwanted. Using the inline method described above, the only
measurement error should come from the overhead of starting and stopping the
counters, which, according to [3] amounts to 2 to 3 machine instructions per macro
invocation.

Another discrepancy between the measurements taken in this thesis and the ones
taken in [7] is that Mikulcak did not use the DMAs to transfer data, whereas the
measurements presented here were all taken using the DMA to transfer the data.
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According to [7], to be able to “measure the exact time to transfer a token using
the implemented send_token and receive_token functions, the DMA controllers are
disabled [...] thereby forcing the utilization of memcpy and therefore the processor
itself to send and receive tokens”.

4.2 Observations and Analysis of Data

The analysis is conducted on a limited sample set. This is due to the fact that many
of the synthesized systems did not work properly. They exhibited different anomalies
including failing to start, dropping tokens, and other effects. These anomalies are
discussed more in depth in 4.2.1 To avoid contaminating the sampled times with
potentially faulty measurements, all sample sets coming from systems that displayed
anomalous behavior was rejected from the data selection.

The initial hypothesis was that the number of cycles required to send data would be
a function of three variables, t, number of bytes per token, b, number of tokens per
transmission and s, number of cycles per TDM arbiter slot.

4.2.1 Stability Issues

During the data collection phase, it was apparent that some PSOPC generated systems
suffered from stability issues. Not all configurations worked. Table 4.1 demonstrates
two particularly troublesome group of tests that did not perform satisfactorily. No
visible pattern emerged during the work of this thesis that could point to the cause
of these problems. The respective tokens that did not make it through did not
share any immediately apparent common patterns or discernible features compared
to tokens that were transmitted properly. Apart from the configurations listed in
Table 4.1, many more configurations were tested. The greater majority of those
would work, and in case they did not work satisfactorily, it would be due to the
system dropping one or two tokens during a full test. Even though this might seem
a small number, it is not acceptable to have any lost tokens at all. Another group
of system configuration that did not work during the work on this thesis were all
systems where token sizes were 4 bytes or less. In these cases PSOPC instantiates a
hardware FIFO instead of a software FIFO. None of the tokens communicated over
hardware FIFO was received correctly.

4.2.2 Data Selection

To sample three variables, and to sample with both adequate resolution and range,
is not trivial. If we would want n steps in resolution per variable we would have to
perform n3 tests. With one test taking approximately 5 minutes, even with such a
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s = 1000 s = 5000

b\t 8 16 32 64 128 8 16 32 64 128

1 O O O O O O O O O O
2 ! O O O O X ! ! ! O
4 O ! X X O O O ! ! O
8 ! ! X ! O O ! ! O

16 ! ! X ! O O O X ∞
32 O O O O X ∞ -

Table 4.1: This table shows particularily troublesome system sets, namely those which had TDM
arbiter slot times of 1000 and 5000 cycles respectively. An “O” denotes succesful test, “!”
denotes that some tokens were lost, “X” denotes that most or all tokens were lost, “∞”
denotes that main started over repeatedly, with only the first printf() statement visible. “-”
denotes that nothing happened, the program never started. Even though the systems with
s = 1000 and the systems with {s = 5000, t = 128} do not fulfill the requirement in Eq.4.2,
the systems themselves should work, albeit without respecting WCCC requirements. This
fact does not explain why some arbitrary systems would not start at all, or lose tokens.

low n as n = 10, that is 10 full working days worth of data collection. Since a lack of
understanding beforehand in terms of what values for the three variables t, s, b were
plausible depictions of real systems, I opted for broad range of samples, in favor of a
more limited range of values with higher resolution. What seemed most reasonable
was to select the values exponentially, as powers of 2. After having to start over
with the data collection because a revision of the test program, and due to the fact
that many data sets had to be rejected due to erroneous results, the collected data is
rather limited, with approximately 60 000 usable datapoints.

4.2.3 The Effect of Randomizing the Test

The first thing to analyze was if the concern regarding TDM-round aliasing was
correct. The hypothesis was that if one naively runs the same test loop over and
over again, the length of the loop and the length of the TDM-round could be of
such unfortunate proportions that it would falsely alter the distribution of possibly
observable WCCCs.

As Figure 4.2 on page 40 confirms, the effect of aliasing is very pronounced once
you take away the random wait each loop. The distribution within the randomized
sample sets exhibit sharp limits, and provide a much better measure for WCCC than
the non-randomized sets.
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System configuration Predicted (1200 + 48× t+ 2× s) Measured

t = 16, b = 1, s = 4000 9 968 32 512
t = 16, b = 1, s = 8000 17 968 38 488
t = 16, b = 1, s = 16000 33 968 50 506
t = 16, b = 1, s = 32000 65 968 98 438

Table 4.2: This table shows that the figures given by the formula given in [7] are consistently too low.

4.2.4 Deviating Observations

Some of the sample sets exhibit nonlinearities that cannot be explained by Mikulcaks
formula for WCCC. He proposes the linear relationship thatWCCC = 1200+48×t+
max(TDM). Mikulcak has a stochastic term in his formula for calculating WCCC,
namely TDM, which is the time a master has to wait for his turn to communicate.
As shown in Figure 4.2 (page 40), the distribution of this term is dependent on the
calling program. The function max(TDM) however is directly calculable as being the
maximum number of allocated slots that can go before the sending master, times
the length of one slot. In our system, with only three masters, each having one
slot, max(TDM) equals 2× s, which for the uppermost case in Figure 4.4 (page 42)
equals 8000 cycles. Figure 4.4 (page 42) show four histograms for the tests of four
systems with different TDM slot lengths. In the topmost test case, there is a gap
between the group to the left and the group to the right. The gap between the
lowest number of communication cycles of the rightmost group, and the highest
number of communication cycles of the leftmost group is 18018 cycles. This number
cannot be explained by the max(TDM) term. The same kind of gap can be observed
in Figure 4.3 (page 41). However, the cases depicted in Figure 4.3 violates the
requirement stated in Eq.4.2. The banding effect seen in both Figures4.3 and 4.4
could possibly stem from the fact that a transmissions would not finish within one
TDM round, but since {t = 16, b = 1, s = 4000} exhibits banding without violating
Eq.4.2 that would in such case suggest that the criterion as stated in Eq.4.2 is not
strict enough. Another possibility is that this effect is not pertaining to violating
Eq.4.2, but something else entirely.

Furthermore, Mikulcak’s formula predicts that WCCC for a system {t = 16, b =
1, s = 4000} should be 9968 cycles, whereas the histogram clearly shows that both
groups lie well beyond this prediction. This is also true for the other configurations
depicted in Figure 4.4 on page 42, whose measured WCCC is also well beyond what
Eq. 4.1 suggests as shown in Table 4.2.

Looking at Figure 4.5 on page 43 and yet another set of tests, it becomes ever
more apparent that Mikulcak’s formula for WCCC prediction does not apply to the
presumptions in this thesis. The values predicted by the formula are only giving
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values between 66 % and 70 % of the measured values. This is not in line with
Mikulcak’s results in [7] where the predicted WCCC is always pessimistical and
between 100.02% and 101.4%. He presents two different sets of measurements, one
set where the sending master is granted access immediately, and another where the
master has just missed its window and has to wait the full max(TDM) extra cycles.
How this behavior was achieved was not clearly explained, and not something that
was tried during the tests in this thesis. Rather the waiting times before being granted
access is in this thesis considered to be any possible value between 0 cycles and
max(TDM) cycles. This behavior is also visible in Figure 4.2 where the distribution
of attained measurements is randomly spread out over the a range with sharp limits
due to send calls not aligning with TDM grant slots.

4.2.5 The Buffer Length

An initial hypothesis was that not only token size and slot length was a variable in
determining communication time, but that also the length of the buffer might play a
role. Looking at Figure 4.6 on page 44 we notice that the histogram gets shifted to
the right, without altering the distribution and the length of the interval of possible
communication times. This means that all transfers were finished within the time
slot assigned. This is confirmed by Mikulcak’s formula, which if we disregard the
2× s term, we can calculate that the transfer time, counting from the instant the
master is granted access, will be 4 ∗ 1200 + 4 ∗ 48 ∗ 32 = 10944 cycles, which is well
within the alloted 16000.

4.2.6 Another Approximation

When analyzing the data gathered through the work on this thesis, one thing stands
out more clear than anything. The difference between measured WCCC and BCCC
is almost always approximately 3s

2 . One approach to finding a formula would be to
solve some set of linear equations. If WCCC is a linear function wccc(t, b, s), then,
by solving for example the following equation (where g(t, b, s) is a function giving a
vector of measurement points),

Ax = B,
8 16000 1
16 16000 1
32 16000 1
64 16000 1
128 16000 1


x1
x2
x3

 =


min(g(8, 1, 16000))
min(g(16, 1, 16000))
min(g(32, 1, 16000))
min(g(64, 1, 16000))
min(g(128, 1, 16000))


(4.3)

we obtain the following expression for WCCC:
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wccc(t, b, s) = b×

[t s 1
] x1
x2
x3


+ 3s

2 (4.4)

Solving for this gave, x1
x2
x3

 =

 23.023
1.6349

0.00010218

 (4.5)

We see that the constant term is negligible, so our approximate expression be-
comes

wccc(t, b, s) ≈ b×
(
23.023 ∗ t+ 1.6349 ∗ s

)
+ 3s

2 (4.6)

4.2.6.1 How Does New Approximation Perform?

Looking at Figure 4.7 on page 45, 4.8 on page 46 and 4.9 on page 47, we see
that the data do not indicate that WCCC is a linear function at all. The samples
show piecewice linearity, but sample points are too few to rule out polynomial
solutions. The system is over constrained and a unique solution was not found.
However when 16000 / s / 32000, an approximation of WCCC was found to be
Eq. 4.6. This approximation however is of no use, since it underestimates the
real WCCC. It is a strict criterion that the predicted WCCC is always above real
WCCC.

4.3 Conclusion

The sample set was biased towards too low numbers of TDM slot length, where the
platform showed considerable instability. It would probably have been better to take
more samples with higher values for slot length.

One possible reason to the discrepancy between the results here and the results
presented in [7], could stem from the fact that Mikulcak did not use DMA, but
handled all communication using the CPU. The author of this thesis argues that
any meaningful discussion about systems generated by PSOPC should assume the
default state of the generated systems, and the default state is to have the DMA
controllers enabled. Furthermore, the author of this thesis argues that the method
of measurement proposed in this thesis produces measurements accurate to a real
situation, and if using DMA introduces some unacceptable uncertainty, one should
maybe reevaluate the current choice of implementation of the send_token and
receive_token functions.
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An approximation of WCCC was found, but since it underestimates the real figures,
it is of no use.
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Figure 4.2: This figure clearly shows that the aliasing effect is pronounced if one does not introduce
a random waiting time at the beginning of each test loop. The sample sets that were
taken with randomization show a uniform distribution with clear upper and lower limits,
i.e. WCCC and BCCC. The samples taken without the randomization exhibit clustering
around some center, with a slightly skewed bell shaped distribution with comparatively
small deviations. These small deviations do not tell anything about where WCCC and
BCCC might be situated on the axis.
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Figure 4.3: The histograms show distributions with varying token sizes. The banding effect appears
whenever slot length goes below and including 4000 cycles. This effect might stem from
the fact that the time to send a token is greater than the slot length, so the transfer
is distributed over multiple TDM-rounds. Why we can observe two distinct groups of
transfer times could not be explained during the work with this thesis.
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Figure 4.4: This figure shows four histograms for the tests of four systems with different TDM slot
lengths. Notice that system {t = 16, b = 1, s = 4000} exhibit banding in its distribution.
This configuration does not violate the requirement postulated in Eq.4.2, which might
indicate that either the requirement or the WCCC formula is not defined correctly or not
applicable to these tests, or the banding effect is not directly related to length of a token
transfer.
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Figure 4.5: Two plots showing WCCC for different token sizes. The lower plot is calculated using
the formula in [7], while the higher is sampled data.This plot shows that the formula
given to predict WCCC does not accurately depict the real systems.
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Figure 4.6: Histogram over WCCC vs b. We notice that all data points are translated, but that the
distribution and the interval between min and max are intact.
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Figure 4.7: This plot shows WCCC for both the revised approximation presented in this thesis, as
well as sampled data, as we vary token size. The approximation (star markers) lies close
to the measured values (plus markers). The approximation is not strictly pessimistic and
is therefore not useful as WCCC.
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Figure 4.8: This plot shows WCCC for both the revised approximation presented in this thesis, as
well as sampled data, as we vary slot length. Here we see that the measured value seems
to be piecewise linear. The approximation lies below the measured WCCC, which means
that the approximation is not acceptable. Under some circumstances will the real WCCC
be higher than what we would expect from the approximation.

46



4.3 Conclusion

1 2 4 8
50000

100000

150000

200000

250000

b [tokens]

W
C

C
C

 [c
yc

le
s]

t=32, s=16000

Figure 4.9: In this graph, showing WCCC with varying buffer sizes, the new approximation is far
below the true WCCC. It is not a safe estimate, since WCCC always has to be higher
than what could ever appear in a real situation.
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5 Chapter 5

Conclusions and Future work

The purpose of this thesis was to assess the quality of systems created with PSOPC.
The initial idea was to create a multiprocessor system running an application modelled
as an SDF graph. This would serve, both as an example of a synchronous data flow
application, but also as a benchmark to measure the current DSE tool against. At
the start of the work with this thesis, little was known about how well the predicted
execution and communication times would compare to real figures measured on real
hardware.

5.1 What I Have Not Done

During the course of working with the thesis and trying to implement an example
SDF application, lots of problems were encountered. After a lot of work I decided, in
dialogue with my supervisors, to put emphasis on trying to measure communication
time, rather than to implement a useful application. In the end there was also no
time to incorporate the DSE tool’s timing projections into this thesis. As a result of
this, the collected data and the conclusions derived from it, are left as reference for
future work on this subject.

5.2 What I Have Done

I have found that the platform, and systems generated with it, exhibits some anomalies
that needs to be investigated further. I have found that the systems with hardware
FIFO do not seem to work, and not all configurations with software FIFO will run
either, or show problems in regards to being able to maintain the integrity of the
data being passed around.

I have further found that the formula for estimating WCCC given in [7] underes-
timates real measured WCCC under the assumptions of this thesis. Mikulcak’s
formula (Eq.4.1) is probably only valid with DMA disabled when the processors
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handles the transfers themselves. The systems created within this thesis have all
had DMA enabled since this is the default behavior for a system created with
PSOPC.

In an attempt at finding a better approximation which could be used to describe
systems as they generally are created in PSOPC, an approximation was calculated in
Section 4.2.6. This approximation is probably only applicable under the conditions
discussed here, with two SDF actors communicating with each other. I have further
shown that this approximation is not usable as a prediction of WCCC since it is not
strictly pessimistic for all configurations, but since it is closer to the measured figures
in the studied cases, maybe it could serve as an estimate of transfer speeds, provided
that it is tested and verified on more system configurations.

5.3 Future Work

Stability has been an issue during the work on this thesis. It seems that there are
aspects of PSOPC that needs to be looked into more thoroughly. But as it stands
now, it is a great starting point for further development. The next step should be to
try to identify the bugs in PSOPC, such as the packet losses and the fact that some
systems did not even run.

It should be pointed out that some aspects of the PSOPC systems was not fully
understood by the author of this thesis, particularly with respect to how DMA affects
performance. This is in part because [7] offers limited explanation to some of them.
It would make sense to redo the experiments in this thesis without the use of DMA
to see if the claims in [7] holds under these conditions.

Whenever the bugs have been mitigated and the timing of systems using DMA is
better understood the main area of interest should be further automation of the
system development process. More specifically, ideally the PSOPC scripts should
eventually be automatically invoked after the DSE phase, and the result should be a
complete running system. In my view, the goal for a future ForSyDe IDE should
be that the only responsibility of the system developer is to construct the overall
system model, the code for each process and a set of constraints. Everything else
should be automatically generated after that.

For this to become a reality PSOPC has to be extended to be able to handle
communication between processes mapped to the same processor, as well as feedback
communication from one actor to itself. It also needs to be able to extract and
implement both the schedule given by the DSE tool as well as the actual code for
each process in the network. Eventually PSOPC should also be extended to support
all MoCs that ForSyDe supports.
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